ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
José Guasp, Macarena Liniers, Cándida Fuentes, Germán Barrera
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 32-41
Technical Paper | doi.org/10.13182/FST99-A75
Articles are hosted by Taylor and Francis Online.
The neutral beam power transmitted into the helical axis stellarator TJ-II is calculated for the final duct design of TJ-II. The transmitted beam is intercepted by the first toroidal field coil before reaching the plasma. The nontrapped fraction of the beam hits various vacuum vessel components.The adopted design of the graphite thermal shields used as vacuum vessel protection at TJ-II is presented. The design achieves a compromise between maximum power into the torus and minimum loads on sensitive parts.A three-dimensional version of the beam geometric code DENSB is set up to calculate the power loads due to shine-through neutrals on the shields under these circumstances. Power load maps are the input to the finite element code ANSYS for the calculation of temperature distributions.For the usual duty cycle at TJ-II (300-ms pulses every 300 s), the peak surface saturation temperatures at all surfaces remain under 650 °C, well below the tolerable limits for graphite.