ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. A. Frederick, A. C. Forsman, J. F. Hund, S. A. Eddinger
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 499-504
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-4-499
Articles are hosted by Taylor and Francis Online.
Experiments on the Omega laser at the Laboratory for Laser Energetics require tantalum oxide (Ta2O5) aerogel thin films with a thickness ranging from 70 to 150 m and densities of 250 and 500 mg/cm3. Experiments have been done with the aerogel in a disk geometry with diameters ranging from ~2 to 3 mm with annular slots machined into it and without the slots. These experiments place demanding specifications on the targets in terms of thickness, dimensionality, and mass density variation. Future radiation experiments at the National Ignition Facility will require larger targets ~7 mm in diameter and 200 m thick with more complex features. In the past these targets have been conventionally machined from a starting billet of aerogel ~5 mm in diameter and height. Through a series of steps the aerogel was eventually machined down to the desired thickness. This was a long and arduous labor-intensive process that had high attrition rates and an overall yield of ~50%. We have improved this process by developing a new fabrication technique involving casting the foam to the desired thickness and then laser processing to create the desired features. This technique yields targets that meet the demanding specifications used in recent experiments while increasing throughput, yield, and available feature complexity in targets.