ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
C. A. Frederick, A. C. Forsman, J. F. Hund, S. A. Eddinger
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 499-504
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-4-499
Articles are hosted by Taylor and Francis Online.
Experiments on the Omega laser at the Laboratory for Laser Energetics require tantalum oxide (Ta2O5) aerogel thin films with a thickness ranging from 70 to 150 m and densities of 250 and 500 mg/cm3. Experiments have been done with the aerogel in a disk geometry with diameters ranging from ~2 to 3 mm with annular slots machined into it and without the slots. These experiments place demanding specifications on the targets in terms of thickness, dimensionality, and mass density variation. Future radiation experiments at the National Ignition Facility will require larger targets ~7 mm in diameter and 200 m thick with more complex features. In the past these targets have been conventionally machined from a starting billet of aerogel ~5 mm in diameter and height. Through a series of steps the aerogel was eventually machined down to the desired thickness. This was a long and arduous labor-intensive process that had high attrition rates and an overall yield of ~50%. We have improved this process by developing a new fabrication technique involving casting the foam to the desired thickness and then laser processing to create the desired features. This technique yields targets that meet the demanding specifications used in recent experiments while increasing throughput, yield, and available feature complexity in targets.