ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kimberly A. DeFriend Obrey, Robert D. Day, Doug Hatch, Brent F. Espinoza, Shihai Feng, Brian M. Patterson
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 490-498
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-4-490
Articles are hosted by Taylor and Francis Online.
Aerogel is a material used in numerous components for inertial confinement fusion and high-energy density physics targets. In the past, these components were molded into the proper shapes. Artifacts left in the parts from the molding process, contour irregularities from shrinkage, and density gradients caused by the skin have caused Los Alamos National Laboratory to pursue machining as a way to make the components. The machining of aerogel is an involved process, and many manufacturing aspects need to be considered including holding the material for machining, achieving the desired surface roughness and the desired dimensional accuracy, conceivably producing a part with enhanced dimensional tolerance and minimal density variations. Therefore, an effort has been established to develop a method to more accurately determine density errors, perform machining experiments, acquire physical property data, and model the machining process.