ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Fuyumi Ito, Naotake Nakamura, Keiji Nagai, Mitsuo Nakai, Takayoshi Norimatsu
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 465-471
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7428
Articles are hosted by Taylor and Francis Online.
Low-density foam balls with a diameter of ~1 mm were produced from a density-matched emulsion consisting of a resorcinol-formaldehyde (RF) aqueous solution (W) and an exterior oil of carbontetrachloride/(mineral oil) (O). Phase-transfer catalysts such as an alkyl amine were dissolved in the exterior oil, following which the catalyst moved into the RF solution from the exterior oil. A gelation process was monitored by a complete gelation test. When the basic catalysts were used at room temperature as a phase-transfer catalyst, gelation occurred within 30 to 120 min, whereas when the acidic catalyst was used, gelation occurred within 20 to 30 min at room temperature. When ~0.39 wt% of triethylamine and tri(n-butyl)amine in the oil phase were used, complete gelation took place. A basic catalyst with a long alkyl chain such as dimethyl(n-hexyl)amine did not induce gelation. The gelated balls obtained using the basic catalyst with a short alkyl chain were dried by extraction using supercritical fluid CO2 and the solvent was replaced with 2-propanol to produce the foam structure. Except 0.39 wt% tri(n-butyl)amine, the basic catalysts yielded foam balls with higher densities of 173 to 184 mg/cm3 as compared to those obtained from a benzoic acid catalyst, namely, 158 mg/cm3. The density difference can be attributed to the inclusion of the basic catalyst in the RF solution. Scanning electron microscopy images revealed a surface membrane formation, which can be explained by local concentration at the W/O interface. The cell size of the bulk foam was observed to depend on the catalysts, and it was surmised that the cell sizes varied because of the different gelation rates. A smooth surface membrane tri(n-butyl)amine was used as a catalyst. The membrane obtained on using a basic phase-transfer catalyst was smoother than that obtained on using an acid catalyst. Such a smooth membrane is useful for coating the ablation layer of foam capsule targets.