ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. W. Luo, A. L. Greenwood, A. Nikroo, C. Chen
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 456-460
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7426
Articles are hosted by Taylor and Francis Online.
One suggested approach to decreasing preheat of Laboratory for Laser Energetics cryotargets is to add a silicon dopant ~4 to 6 at.% to normal plasma polymer. As in the case of pure CH and CD shells used previously, the physical properties of these shells are of utmost importance to allow proper fielding for cryogenic shots. We have fabricated and characterized two types of Si-doped glow discharge polymer (GDP) capsules: single-layer Si-doped GDP shells (SiGDP) and double-layer Si-doped GDP/SCD shells (SiGDP/SCD).The Si-doped GDP shells with an ~870-m diameter and 5-m-thick walls were fabricated to meet the cryogenic direct laser fusion experiment requirements. Si-doped GDP shells with <0.25-m wall variation and 5% silicon dopant level were delivered. These cryogenic shells can survive a 1000-atm D2 or deuterium-tritium fill and cryogenic cooling without bursting or buckling. With an average buckle strength of 70 psi, a half-life of 12 s, and a D2 permeability at 20°C of 2.4 × 10-14 (mol × m/m2 × Pa × s), Si-doped GDP shells meet the criteria for cryogenic experiments. A possible drawback of the SiGDP layer is its rapid OH pickup due to exposure to air, which can increase the amount of infrared light absorbed in the shell wall as compared to D2 ice and possibly result in a poor ice uniformity during the cryogenic layering process. The absorption coefficient of the SiGDP at 3160 cm-1 measured by Fourier transform infrared spectroscopy is ~48 cm-1 at 0.1 h to ~130 cm-1 at 167 h of air exposure.