ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
R. W. Luo, A. L. Greenwood, A. Nikroo, C. Chen
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 456-460
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7426
Articles are hosted by Taylor and Francis Online.
One suggested approach to decreasing preheat of Laboratory for Laser Energetics cryotargets is to add a silicon dopant ~4 to 6 at.% to normal plasma polymer. As in the case of pure CH and CD shells used previously, the physical properties of these shells are of utmost importance to allow proper fielding for cryogenic shots. We have fabricated and characterized two types of Si-doped glow discharge polymer (GDP) capsules: single-layer Si-doped GDP shells (SiGDP) and double-layer Si-doped GDP/SCD shells (SiGDP/SCD).The Si-doped GDP shells with an ~870-m diameter and 5-m-thick walls were fabricated to meet the cryogenic direct laser fusion experiment requirements. Si-doped GDP shells with <0.25-m wall variation and 5% silicon dopant level were delivered. These cryogenic shells can survive a 1000-atm D2 or deuterium-tritium fill and cryogenic cooling without bursting or buckling. With an average buckle strength of 70 psi, a half-life of 12 s, and a D2 permeability at 20°C of 2.4 × 10-14 (mol × m/m2 × Pa × s), Si-doped GDP shells meet the criteria for cryogenic experiments. A possible drawback of the SiGDP layer is its rapid OH pickup due to exposure to air, which can increase the amount of infrared light absorbed in the shell wall as compared to D2 ice and possibly result in a poor ice uniformity during the cryogenic layering process. The absorption coefficient of the SiGDP at 3160 cm-1 measured by Fourier transform infrared spectroscopy is ~48 cm-1 at 0.1 h to ~130 cm-1 at 167 h of air exposure.