ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
R. R. Paguio, A. Nikroo, K. M. Saito, J. F. Hund, E. R. Castillo, N. M. Ravelo, K. Quan
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 450-455
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7425
Articles are hosted by Taylor and Francis Online.
Resorcinol formaldehyde (RF) foam shells are needed for direct-drive inertial confinement laser fusion experiments at the University of Rochester OMEGA laser facility. As previously reported, the addition of long-chained polymers to the fabrication process has improved shell wall uniformity, but this change has led to a lower yield (from ~40 to ~15%) of shells that are gas retentive after the application of glow discharge polymer (GDP) using the standard deposition technique. We have improved this yield by modifying the coating conditions of the GDP overcoating process by modifying the background coating pressure from the constant 75 mTorr to using a two-step coating process of a high-pressure coating at 250 mTorr followed by low-pressure coating of 75 mTorr. This modification has improved the yield of the gas retention on the styrene-butadiene-styrene RF shells from ~15 to ~60%. We have found that the surface roughness of these shells is also improved from ~45 nm root-mean-square (rms) to ~20 nm rms. This technique, however, leads to a slight shrinkage of shells, which will be described.