ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. T. Bousquet, J. F. Hund, D. T. Goodin, N. B. Alexander
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 446-449
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-446
Articles are hosted by Taylor and Francis Online.
The horizontal rotary glow discharge polymer (GDP) coater is being developed to help increase the production rate of inertial confinement fusion targets and to meet the very high production rates needed for inertial fusion energy targets. The coater is used to put a conformal GDP gas retention coating on top of foam shell targets. A number of alterations to the design and operation of the horizontal rotary GDP coater are discussed. Compared to previous iterations of the horizontal coater, the changes have resulted in improving the yield of gas retentive targets with thinner coatings and increasing the coating rate, smoothness, and uniformity. The number of targets that can be coated at once has increased from tens to hundreds, or even thousands. The alterations include changing the coating tube configuration; adjusting the coating pressures; and altering the radio-frequency power, gas flow rates, and tube rotation rates. Methods to further improve the coater are also discussed.