ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. C. Chen, A. Q. Nguyen, H. Huang, S. A. Eddinger, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 429-437
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7422
Articles are hosted by Taylor and Francis Online.
A germanium-doped CH capsule is one of the capsule designs for the National Ignition Facility. Eight batches were made to evaluate yields and reproducibility for production. When larger batches (more than 20 capsules) were made, numerous nanometer-height domes, together with many nanometer-sized seeds and micrometer-sized beads, were observed on the capsule surface. These domes originate from abrasion-induced nanometer-sized seeds. Large batch sizes tend to slide as cohesive groups that enhance friction and abrasion. Limiting the batch size to 15 capsules prevented formation of nanometer-height domes. Roughly 80% of the capsules from 15 capsule batches meets the surface roughness specification, and 85% meets the isolated defect specification. The wall thickness and outer diameter yields, currently at 58% and 28 to 40%, respectively, are affected by variables that will be discussed. The average concentrations of the two Ge-doped layers are 0.77 and 0.50 at.%, with standard deviations of 0.15 at.%. The overall Ge-doping yield, with both layers within the most recent tolerance specification of ±0.2 at.%, is 20%. The best overall yields of 15 shell batches are currently 40 to 55%. The yield-limiting factors are wall-thickness accuracy and high mid-mode in outer surface power spectra.