ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
E. L. Alfonso, K. A. Moreno, H. L. Wilkens, J. S. Jaquez, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 424-428
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7421
Articles are hosted by Taylor and Francis Online.
A thin gold layer is deposited as a liner on the interior of a uranium hohlraum to protect from oxidation of uranium. X-ray fluorescence (XRF) spectrometry was chosen as the liner thickness measurement method for its accuracy, speed, and ease of measurement. The process is noncontact and nondestructive. The thicknesses were determined using a micro-XRF spectrometer unit with analysis software. The accuracy of the measurements was verified against qualified standards. The method was used to accurately measure gold liner thicknesses of cylindrical hohlraums, and it gave initial promising results for measuring the thickness of a boron-doped gold layer when corrected for the gold atom fraction.