ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Brian M. Patterson, Kimberly A. DeFriend Obrey, George J. Havrilla, Abbas Nikroo, Haibo Huang
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 417-423
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7420
Articles are hosted by Taylor and Francis Online.
Three-dimensional (3-D) computed micro X-ray tomography (micro CT) and 3-D confocal micro X-ray fluorescence (MXRF) combined are very useful nondestructive metrology techniques for determining the unique compositional and morphological information of fusion targets and target materials. Micro CT and confocal MXRF are being used in concert to examine a beryllium ablator capsule that has been sputtered and graded doped with copper and argon. In this manuscript, we will show that two-dimensional (2-D) MXRF imaging in concert with a simple radiograph is very useful for approximating the copper and argon profiles in the x and y dimensions, but because of the lack of signal discrimination in the z direction, image "bleed" from the sample regions where the X-rays are out of focus is prevalent. Data collected using the micro CT and overlapped with the confocal MXRF data produce absorbance and elemental line profiles without the signal bleed. Overlapping the 3-D data from these techniques provides a more accurate picture of the composition of these capsules than 2-D nondestructive techniques.