ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Brian M. Patterson, Kimberly A. DeFriend Obrey, George J. Havrilla, Abbas Nikroo, Haibo Huang
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 417-423
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7420
Articles are hosted by Taylor and Francis Online.
Three-dimensional (3-D) computed micro X-ray tomography (micro CT) and 3-D confocal micro X-ray fluorescence (MXRF) combined are very useful nondestructive metrology techniques for determining the unique compositional and morphological information of fusion targets and target materials. Micro CT and confocal MXRF are being used in concert to examine a beryllium ablator capsule that has been sputtered and graded doped with copper and argon. In this manuscript, we will show that two-dimensional (2-D) MXRF imaging in concert with a simple radiograph is very useful for approximating the copper and argon profiles in the x and y dimensions, but because of the lack of signal discrimination in the z direction, image "bleed" from the sample regions where the X-rays are out of focus is prevalent. Data collected using the micro CT and overlapped with the confocal MXRF data produce absorbance and elemental line profiles without the signal bleed. Overlapping the 3-D data from these techniques provides a more accurate picture of the composition of these capsules than 2-D nondestructive techniques.