ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. A. Eddinger, H. Huang, M. E. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 411-416
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-411
Articles are hosted by Taylor and Francis Online.
The inertial confinement fusion program requires the uniformity of multilayered samples to be measured to high accuracy. We currently use a reflection spectroscopy tool to measure optically transparent shells with no more than two layers. The method cannot measure opaque samples such as beryllium shells, low-reflection samples such as foam shells, or any shells with more than two layers such as National Ignition Facility specification Ge-CH shells. We also use a white-light interferometer to measure transparent samples with multiple layers, but only at the North/South Poles for a given orientation. To complement these existing tools, we developed an X-ray technique based on a commercial X-ray microscope (Xradia MicroXCT). MicroXCT is capable of providing high-contrast, high-resolution images and allows the samples to be precision aligned and angular indexed. Dimension accuracy is achieved through the calibration of the projection magnification and the lens distortion. From each X-ray image, a wall thickness trace along the great circle is obtained by converting Cartesian coordinates into cylindrical coordinates, and edge-finding algorithms are developed for a contact radiography project. Three-dimensional reconstruction and wall thickness display allow the visualization of the sample nonuniformity. The method has a 0.3 m measurement precision and, through phase contrast calibration, can achieve 0.3 m accuracy.