ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Q. L. Nguyen, S. A. Eddinger, H. Huang, M. A. Johnson, Y. T. Lee, R. C. Montesanti, K. A. Moreno, M. E. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 399-404
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-18
Articles are hosted by Taylor and Francis Online.
Capsules for the National Ignition Facility require measurement of isolated defects on the capsule surface. A phase-shifting diffraction interferometer (PSDI) is used to identify, locate, and measure defects by capturing 71 overlapping ~500-m-diam charge coupled device height maps for software analysis. Using capsules with drilled holes for the purpose of alignment, PSDI data were confirmed with atomic force microscopy by comparing defect data from corresponding equatorial bands. We explored the limitations of the PSDI resulting from unwrapping errors caused by defect slopes greater than the Nyquist sampling theorem. White light interferometry proved to be a useful complementary tool to measure defects that could not be unwrapped by the analysis software. Implementing the PSDI in conjunction with the shell flipper, both developed at Lawrence Livermore National Laboratory, allowed for full mapping of shell surfaces by mounting corresponding hemispheres onto the PSDI within a 2-deg accuracy.