ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Q. L. Nguyen, S. A. Eddinger, H. Huang, M. A. Johnson, Y. T. Lee, R. C. Montesanti, K. A. Moreno, M. E. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 399-404
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-18
Articles are hosted by Taylor and Francis Online.
Capsules for the National Ignition Facility require measurement of isolated defects on the capsule surface. A phase-shifting diffraction interferometer (PSDI) is used to identify, locate, and measure defects by capturing 71 overlapping ~500-m-diam charge coupled device height maps for software analysis. Using capsules with drilled holes for the purpose of alignment, PSDI data were confirmed with atomic force microscopy by comparing defect data from corresponding equatorial bands. We explored the limitations of the PSDI resulting from unwrapping errors caused by defect slopes greater than the Nyquist sampling theorem. White light interferometry proved to be a useful complementary tool to measure defects that could not be unwrapped by the analysis software. Implementing the PSDI in conjunction with the shell flipper, both developed at Lawrence Livermore National Laboratory, allowed for full mapping of shell surfaces by mounting corresponding hemispheres onto the PSDI within a 2-deg accuracy.