ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
A. Q. L. Nguyen, S. A. Eddinger, H. Huang, M. A. Johnson, Y. T. Lee, R. C. Montesanti, K. A. Moreno, M. E. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 399-404
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-18
Articles are hosted by Taylor and Francis Online.
Capsules for the National Ignition Facility require measurement of isolated defects on the capsule surface. A phase-shifting diffraction interferometer (PSDI) is used to identify, locate, and measure defects by capturing 71 overlapping ~500-m-diam charge coupled device height maps for software analysis. Using capsules with drilled holes for the purpose of alignment, PSDI data were confirmed with atomic force microscopy by comparing defect data from corresponding equatorial bands. We explored the limitations of the PSDI resulting from unwrapping errors caused by defect slopes greater than the Nyquist sampling theorem. White light interferometry proved to be a useful complementary tool to measure defects that could not be unwrapped by the analysis software. Implementing the PSDI in conjunction with the shell flipper, both developed at Lawrence Livermore National Laboratory, allowed for full mapping of shell surfaces by mounting corresponding hemispheres onto the PSDI within a 2-deg accuracy.