ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Stefaan Poedts, Arnold De Ploey, Hans Goedbloed, Bong Guen Hong, Sun Kyu Kim
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 18-31
Technical Paper | doi.org/10.13182/FST99-A74
Articles are hosted by Taylor and Francis Online.
The stability of the KT-2 tokamak plasma has been analyzed in the framework of ideal and resistive linearized magnetohydrodynamics. KT-2 is the Korean tokamak project that involves a large-aspect-ratio divertor tokamak with an up-down symmetric plasma cross section. First, equilibria with monotonic q profiles are investigated. Starting from four ballooning stable reference equilibria with ever broader pressure profiles and with an aspect ratio of 5.6, an ellipticity of 1.8, a triangularity of 0.6, and a total plasma current of 500 kA, the effects on the shape of the poloidal plasma cross section (ellipticity and triangularity), the aspect ratio, and the total plasma current on the ballooning and ideal and resistive external kink instabilities are studied. Also, advanced tokamak scenarios have been investigated. A local profile optimization study is performed for a lower total current, i.e., Ip = 300 kA, and a magnetic field of 2 T. Next, the stability of the marginal ballooning stable equilibria with respect to so-called infernal modes is analyzed.