ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
I. N. Sviatoslavsky, A. R. Raffray, M. E. Sawan, X. Wang
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 535-539
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A739
Articles are hosted by Taylor and Francis Online.
A multi-institutional study HAPL (High Average Power Laser) is investigating a relatively near term conceptual design of a laser driven inertial confinement reactor. A primary focus of the study is the protection of the first wall (FW) from the target emanations. This paper gives a brief analysis of one of several possible blankets that can be integrated with the chosen FW protection scheme. The structural material is conventional ferritic steel (FS) F82H cooled with liquid lithium. The maximum average temperature is constrained to 550°C. The chamber radius is 6.5 m at midplane, tapering to 2.5 m at the ends, and is surrounded by a cylindrical vacuum vessel. The first wall (FW) is 0.35 cm FS, which has a 0.1 cm thick layer of tungsten bonded to it facing the target. The FW is cooled with Li admitted at the bottom of the blanket, flows through a gap between 0.25-0.5 cm to the top, then returns through the center of the blanket channel to the bottom. There are 60 laser beam ports situated around the chamber. The tritium breeding ratio (TBR) is 1.124. A Brayton cycle is envisaged with an efficiency in the range of 42-44%.