ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
M. E. Sawan, S. Malang, C. P. C. Wong, M. Z. Youssef
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 510-517
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A735
Articles are hosted by Taylor and Francis Online.
Neutronics assessment has been performed for molten salt breeding blanket design options that can be utilized in fusion power plants. The concepts evaluated are a self-cooled Flinabe blanket with Be multiplier and dual-coolant blankets with He-cooled FW and structure. Three different molten salts were considered including the high melting point Flibe, a low melting point Flibe, and Flinabe. The same TBR can be achieved with a thinner self-cooled blanket compared to the dual-coolant blanket. A thicker Be zone is required in designs with Flinabe. The overall TBR will be ~1.07 based on 3-D calculations without breeding in the divertor region. Using Be yields higher blanket energy multiplication than obtainable with Pb. A modest amount of tritium is produced in the Be (~3 kg) over the blanket lifetime of ~3 FPY. Using He gas in the dual-coolant blanket results in about a factor of 2 lower blanket shielding effectiveness. We show that it is possible to ensure that the shield is a lifetime component, the vacuum vessel is reweldable, and the magnets are adequately shielded. We conclude that molten salt blankets can be designed for fusion power plants with neutronics requirements such as adequate tritium breeding and shielding being satisfied.