ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
N. B. Morley, S. Malang, I. Kirillov
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 488-501
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A733
Articles are hosted by Taylor and Francis Online.
This paper provides a description of the most promising liquid breeder blankets currently proposed for testing in ITER. The critical MHD issues for selfcooled and dual coolant LM systems are the MHD pressure drop and flow distribution with ideal and imperfect insulator barriers/coatings, ideal and imperfect flow channel inserts, and complex geometry flow elements like expansions, contraction, manifolds, etc. Separately cooled LM systems still must circulate the LM for tritium removal, and similar MHD issues may limit flow velocity and influence tritium permeation due to creation of stagnant regions and other nonideal flow distribution effects. Molten salt breeder/coolants have significantly reduced electrical conductivity as compared to LMs, and MHD pressure drop is not considered a serious issue. However, MS also has much lower thermal conductivity, and the heat transfer to/from the structure depends on turbulent convection. The degradation of convective heat transfer by MHD turbulence modification/suppression is of great interest for both selfcooled MS systems where first wall cooling may need to be enhanced, and dual coolant MS systems where heat transfer from the hot breeder to the cooler wall needs to be suppressed. These issues are discussed in detail and development plans specifically for the dualcoolant PbLi concept, up to and including integrated testing in ITER, are presented.