ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
L. El-Guebaly et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 432-439
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A725
Articles are hosted by Taylor and Francis Online.
It is widely recognized among stellarator researchers that the minimum distance between the plasma boundary and the middle of the coil (min) is of great importance for stellarators as it impacts the machine parameters considerably. Techniques for minimizing the radial build have made impressive progress during the first year of the ARIES-CS study. A novel approach has been developed for ARIES-CS where the blanket at the critical area surrounding min has been replaced by a highly efficient WC-based shield. As a result, an appreciable 20-90 cm savings in the radial build has been achieved, reducing the major radius by more than 20%, which is significant. The economic benefit of this approach is yet to be determined and the added engineering problems and complexity will be addressed during the remaining period of the study. This paper covers the details of the radial build optimization process that contributed to the compactness of ARIES-CS. Compared with previous designs, the major radius of ARIES-CS has more than halved, dropping from 24 m to less than 10 m, making a step forward toward the feasibility of a compact stellarator power plant.