ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Farrokh Najmabadi, the ARIES Team
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 406-413
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A722
Articles are hosted by Taylor and Francis Online.
A detailed and integrated study of compact stellarators as power plants, ARIES-CS, was initiated recently to advance our understanding of attractive compact stellarator configurations and to define key R&D areas. We have completed phase 1 of ARIES-CS study - our results are described in this paper. We have identified several promising stellarator configurations. High particle loss of these configurations is a critical issue. It appears that devices with an overall size similar to those envisioned for tokamak power plants are possible. A novel approach was developed in ARIES-CS in which the blanket at the critical areas of minimum stand-off is replaced by a highly efficient WC-based shield. In this manner, we have been able to reduce the minimum stand-off by ~20%-30% compared to a uniform radial build which was assumed in previous studies. Our examination of engineering options indicates that overall assembly and maintenance procedure plays a critical role in identifying acceptable engineering design and has a major impact on the optimization of a plasma/coil configuration.