ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Paul R. Garabedian, Long-Poe Ku, the ARIES Team
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 400-405
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A721
Articles are hosted by Taylor and Francis Online.
The discovery of quasiaxially symmetric stellarators whose magnetic spectrum has approximate two-dimensional symmetry opens up the possibility of designing fusion reactors that have tokamak transport and stellarator stability. Prototypes with two or three field periods have asymmetries almost as small as the coefficients for a typical tokamak that are associated with ripple from the toroidal coils or helical excursion of the magnetic axis resulting from instability. We have found modular coils that are only moderately twisted and produce robust flux surfaces that do not deteriorate when changes are made in the magnetic field. This work is bolstered by recent stellarator experiments that have exceeded stability limits predicted by linear theory. The problem may be that force balance and stability are lost across islands if the equilibrium equations are not in conservation form.