ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
N. Hosogane, the JT-60 Team, JFT-2M Group
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 363-369
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A717
Articles are hosted by Taylor and Francis Online.
For steady state advanced tokamak research with long pulse operations, JT-60U tokamak discharge, NBI and RF heating injection durations have been extended from 15 s to 65 s and from 10 s to 30 s respectively mainly by means of modifying their control systems and using derated power levels. In addition, technological issues for their long pulse injections with the heating systems have been solved as follows. The ion source of the negative ion NBI system was modified to increase gas conductance in the accelerator, which reduced the heat load to the grounded grid due to stripping loss to a level that enables operations of 2 MW for 30 s. A new method of controlling the anode voltage has been developed for sustaining the oscillation condition of a gyrotron in the electron cyclotron (EC) system. With this method, the EC injection duration has reached 16 s at 0.4 MW. To avoid serious damage of the LH launcher, a heat-resistant carbon grill LH antenna was implemented on the original stainless steel grill. To date, the advanced tokamak operations have been extended to N = 2.1 for 20 s. In JFT-2M, high N plasmas had been investigated with the vacuum vessel covered with ferritic steels. N of ~3.5 was obtained with rwall/a~1.3-1.6 without serious influence of ferromagnetic walls (rwall is distance of the wall from a plasma center and a is minor radius of a plasma). This encourages the utilization of ferric steel as a structural material for future reactors.