ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N. Hosogane, the JT-60 Team, JFT-2M Group
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 363-369
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A717
Articles are hosted by Taylor and Francis Online.
For steady state advanced tokamak research with long pulse operations, JT-60U tokamak discharge, NBI and RF heating injection durations have been extended from 15 s to 65 s and from 10 s to 30 s respectively mainly by means of modifying their control systems and using derated power levels. In addition, technological issues for their long pulse injections with the heating systems have been solved as follows. The ion source of the negative ion NBI system was modified to increase gas conductance in the accelerator, which reduced the heat load to the grounded grid due to stripping loss to a level that enables operations of 2 MW for 30 s. A new method of controlling the anode voltage has been developed for sustaining the oscillation condition of a gyrotron in the electron cyclotron (EC) system. With this method, the EC injection duration has reached 16 s at 0.4 MW. To avoid serious damage of the LH launcher, a heat-resistant carbon grill LH antenna was implemented on the original stainless steel grill. To date, the advanced tokamak operations have been extended to N = 2.1 for 20 s. In JFT-2M, high N plasmas had been investigated with the vacuum vessel covered with ferritic steels. N of ~3.5 was obtained with rwall/a~1.3-1.6 without serious influence of ferromagnetic walls (rwall is distance of the wall from a plasma center and a is minor radius of a plasma). This encourages the utilization of ferric steel as a structural material for future reactors.