ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
N. Hosogane, the JT-60 Team, JFT-2M Group
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 363-369
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A717
Articles are hosted by Taylor and Francis Online.
For steady state advanced tokamak research with long pulse operations, JT-60U tokamak discharge, NBI and RF heating injection durations have been extended from 15 s to 65 s and from 10 s to 30 s respectively mainly by means of modifying their control systems and using derated power levels. In addition, technological issues for their long pulse injections with the heating systems have been solved as follows. The ion source of the negative ion NBI system was modified to increase gas conductance in the accelerator, which reduced the heat load to the grounded grid due to stripping loss to a level that enables operations of 2 MW for 30 s. A new method of controlling the anode voltage has been developed for sustaining the oscillation condition of a gyrotron in the electron cyclotron (EC) system. With this method, the EC injection duration has reached 16 s at 0.4 MW. To avoid serious damage of the LH launcher, a heat-resistant carbon grill LH antenna was implemented on the original stainless steel grill. To date, the advanced tokamak operations have been extended to N = 2.1 for 20 s. In JFT-2M, high N plasmas had been investigated with the vacuum vessel covered with ferritic steels. N of ~3.5 was obtained with rwall/a~1.3-1.6 without serious influence of ferromagnetic walls (rwall is distance of the wall from a plasma center and a is minor radius of a plasma). This encourages the utilization of ferric steel as a structural material for future reactors.