ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. H. Kim, T. Lho, S. M. Yoo, B. J. Lee
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 196-199
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A7012
Articles are hosted by Taylor and Francis Online.
Water, which is treated in an dielectric barrier discharge (DBD) apparatus at atmospheric pressure, has some characteristics similar to ozone water. Since a ceramic electrode is used as the upper electrode and the water electrode is used as the lower electrode in the DBD system, the plasma discharge is directly in contact with the water surface. The air layer located between the two electrodes is subject to a high voltage discharge and various gases, such as ozone, oxides of nitrogen, etc, are produced by the discharge. These discharge produced gases react physically and chemically with the water electrode and change the characteristics of the water. This DBD treated water has strong sterilizing and oxidizing ability. The oxidizing ability, which is measured by the iodometry method, is about 60~80 mg/l and pH value is about 2.8~3, i.e., the DBD treated water is subacid. In addition, this treated water can be used to process fruits, vegetables, and flowers so as to allow them to be stored fresh for a long time. In addition the DBD process can effectively eliminate minerals like Fe and Mn in water.