ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Higashizono et al.
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 185-190
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A7010
Articles are hosted by Taylor and Francis Online.
Based on the results of neutral transport simulation using cylindrical mesh-model, the effect of the plasma edge region was investigated in the GAMMA 10 central-cell. 3-dimensional geometry and neutral sources such as gas puffers, limiters, and neutral beam injection are precisely constructed in the mesh-model of the GAMMA 10 central-cell. From the neutral transport simulation in the case of each neutral source, 1/e decay lengths of H-line intensity (H decay length) along with z-axis were evaluated. It was found that H-line intensity calculated by the simulation of the gas puffer #3(GP#3) in mirror-throat region takes a broader profile than that of central-limiter and gas puffer #7(GP#7) around the central mid-plane region because the plasma density is low in mirror-throat and the neutral particles are given near the vacuum vessel, while the neutral particles in the central-limiter are given near the plasma core. The simulation results also revealed that the H-line intensity drastically decrease in the range with interior components. On the other hand, it was clarified that the H-line intensity in no interior component area takes a little reduction because of a large width in plasma edge region.