ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Brezinsek, A. Huber, S. Jachmich, A. Pospieszczyk, B. Schweer, G. Sergienko
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 209-219
Technical Paper | TEXTOR: Diagnostics | doi.org/10.13182/FST05-A701
Articles are hosted by Taylor and Francis Online.
The exploration of plasma-wall-interaction physics is one of the major tasks of the tokamak TEXTOR. A characterization of the high-temperature plasma edge is essential to interpret the interaction processes of the different charged and uncharged particles in the boundary layer. In the design of the TEXTOR, much effort was made to optimize diagnostic access to the plasma edge for the best possible characterization. The major part of the plasma edge diagnostics presented here is based on passive and active spectroscopy, in addition to different types of electrical probes. Thereby, pioneering work has been achieved in both fields.In passive emission spectroscopy, the work concentrated on the determination of particle fluxes of different types of atomic (W, Si, C, . . .) and molecular (D2, CD, C2, . . .) species from the corresponding photon fluxes at different locations and on the visualization of the local impurity sources by means of two-dimensional imaging. The active spectroscopy with atomic beams was focused on the determination of plasma edge parameters (ne, Te, Ti, . . .) with good spatial and temporal resolution. Therefore, different techniques like thermal Li and He beams, suprathermal Li beams - realized by laser blow-off techniques - and hydrogen neutral beam injectors have been employed. Furthermore, laser-induced fluorescence measurements in the ultraviolet and in the vacuum ultraviolet ranges, which were for the first time performed in a fusion plasma, are presented. The continuous improvement of the different plasma edge diagnostics over more than a decade of TEXTOR plasma operation with different types of first-wall materials is discussed.