ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. U. Nam
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 180-184
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A7009
Articles are hosted by Taylor and Francis Online.
A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR). An electron density of plasma is measured on double-path horizontal line with triangular geometry. A cassette system contains two vacuum windows was installed on median port for these purpose. Maximum line-integrated electron density of first plasma is set to 1019 m-2 in this geometry. Since a line density of single-fringe in 280 GHz is 2 × 1018 m-2, a multi-fringe counting circuit has been adopted for a fringe-jump compensation. Measured IF signals are divided into 4 channels which has fringe counting capability of 1, 2, 4 and 8 fringes, respectively. A phase difference between IF signals is converted to DC voltage in each channel according to its fringe coverage. A fringe-jump analysis algorism has been developed for a discrimination of real fringe-jump from noise signal. An electron density of the KSTAR first plasma has been measured and analyzed using this system. Upon these results, an advanced fringe counting scheme will be proposed in this paper.