ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Akito Takahashi, Katsuhiko Maruta, Kentaro Ochiai, Hiroyuki Miyamaru, Toshiyuki Iida
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 256-272
Technical Paper | doi.org/10.13182/FST98-A70
Articles are hosted by Taylor and Francis Online.
Anomalous enhancement of three-body deuteron fusion reactions was observed by low-energy D+ ion beam implantation experiment with titanium-deuteride (TiDx: x = 1.4) using a E-E charged-particle spectrometer. The enhancement ratio was ~1026, compared with the traditional theory estimation for a beam/target interaction of the random nuclear reaction process. Two characteristic charged particles of 4.75-MeV helium (3He) and 4.75-MeV triton from the reaction channel of 3D → t + 3He + 9.5 MeV were identified by the analysis of measured one- and two-dimensional spectral data. An experimentally obtained 3D fusion rate was on the order of 102 fusion/s, which is a surprisingly large value. Strong enhancement of 4D fusion was also indicated by higher-energy alpha-particle spectra.A possible explanation is given by the hypothesis of simultaneous multibody fusion induced with the coherent dynamic motion of three to four deuterons and many electrons around special focal points in a metal-deuteride lattice. The observed enormous enhancement of the 3D fusion rate suggests the possibility of "nuclear fusion in solid at room temperature," i.e., so-called cold fusion, which may open a new physics field between nuclear physics and solid-state physics.