ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Anders Hagnestål, Olov Ågren, Vladimir Moiseenko
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 127-130
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6997
Articles are hosted by Taylor and Francis Online.
Coil systems for producing the Straight Field Line Mirror field using axisymmetric and quadrupolar coils are calculated. Two applications are intended, a fusion-fission nuclear waste transmutation device and a small plasma deposition device. Position, size and current for the axisymmetric coils are optimized as well as radial profile and current for the quadrupolar coils for the two applications. Calculations show that such a coil system can produce the Straight Field Line Mirror field for long-thin mirrors with moderate mirror ratio, but some other coil configuration needs to be found for mirrors where the coils cannot reside close to the plasma edge. In this work, the material science experiment mirror can be produced with about 1% error but the fusion-fission device field has not at this moment been reproduced with acceptable errors.