ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hyun Seok Kim, Hyunsun Han, Ki Min Kim, Jwa-Soon Kim, Sang Hee Hong
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 95-99
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6990
Articles are hosted by Taylor and Francis Online.
A two-dimensional numerical modeling is carried out to simulate argon plasma-neutral transport in a linear divertor simulator with an axisymmetric cylindrical geometry. A pure argon plasma flow is introduced from the source region into the transport region, and pumped out near the target plate. This numerical modeling is based on a time-dependent Braginskii's fluid formulation for plasma transport and a simple diffusion model for neutral transport. The Bohm diffusion model is adopted for calculation of radial diffusion coefficients across the parallel magnetic field in the simulator. Using the design and operation parameters of the Multi-Purpose Plasma (MP2) facility at the National Fusion Research Institute (NFRI) in Korea, argon plasma properties such as density and temperature distributions are calculated, and the formation of ionization front is found in the transport region. Plasma equilibrium profiles along the near axis turn out to be actually unaffected by the pumping positions along the cylindrical wall. Moreover, a gas target divertor concept is numerically simulated to find out puffing effects as well as pumping roles. As increasing the puffing rate at the target plate, not only the ionization front in the plasma density profile is gradually moving toward the entrance region, but also plasma density and electron temperature at the target are dramatically reduced. Two relatively peaked poles in the neutral density profile are resulted from puffing and recycling neutrals, respectively.