ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Hyun Seok Kim, Hyunsun Han, Ki Min Kim, Jwa-Soon Kim, Sang Hee Hong
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 95-99
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6990
Articles are hosted by Taylor and Francis Online.
A two-dimensional numerical modeling is carried out to simulate argon plasma-neutral transport in a linear divertor simulator with an axisymmetric cylindrical geometry. A pure argon plasma flow is introduced from the source region into the transport region, and pumped out near the target plate. This numerical modeling is based on a time-dependent Braginskii's fluid formulation for plasma transport and a simple diffusion model for neutral transport. The Bohm diffusion model is adopted for calculation of radial diffusion coefficients across the parallel magnetic field in the simulator. Using the design and operation parameters of the Multi-Purpose Plasma (MP2) facility at the National Fusion Research Institute (NFRI) in Korea, argon plasma properties such as density and temperature distributions are calculated, and the formation of ionization front is found in the transport region. Plasma equilibrium profiles along the near axis turn out to be actually unaffected by the pumping positions along the cylindrical wall. Moreover, a gas target divertor concept is numerically simulated to find out puffing effects as well as pumping roles. As increasing the puffing rate at the target plate, not only the ionization front in the plasma density profile is gradually moving toward the entrance region, but also plasma density and electron temperature at the target are dramatically reduced. Two relatively peaked poles in the neutral density profile are resulted from puffing and recycling neutrals, respectively.