ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. Unterberg, U. Samm, M. Z. Tokar', A. M. Messiaen, J. Ongena, R. Jaspers
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 187-201
Technical Paper | TEXTOR: Radiation Cooling and Confinement | doi.org/10.13182/FST05-A699
Articles are hosted by Taylor and Francis Online.
The concept of a cold radiating plasma boundary has been proposed as a solution to the problem of power exhaust in magnetically confined fusion plasmas. We describe experiments to study the impact of the radiating impurities on transport processes in the plasma boundary and the plasma core in the tokamak TEXTOR.The injection of impurities (neon, silicon, or argon) leads to the formation of a radiating plasma boundary where up to 90% of the input power can be distributed to large wall areas, thereby strongly reducing the convective heat flux density onto the plasma-facing components. At high plasma densities the impurity seeding leads to a transition to an improved confinement state termed the radiative improved mode. This operational scenario combines high density and high confinement with power exhaust by radiation under quasi-stationary discharge conditions.The confinement improvement can be explained by a reduction of transport caused by the ion temperature gradient mode. This reduction is initiated by the impurity content and amplified by a characteristic steepening of the density profiles of the background plasma. The extrapolation of the results obtained in TEXTOR, based on experiments in larger devices, is discussed.