ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
B. Unterberg, U. Samm, M. Z. Tokar', A. M. Messiaen, J. Ongena, R. Jaspers
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 187-201
Technical Paper | TEXTOR: Radiation Cooling and Confinement | doi.org/10.13182/FST05-A699
Articles are hosted by Taylor and Francis Online.
The concept of a cold radiating plasma boundary has been proposed as a solution to the problem of power exhaust in magnetically confined fusion plasmas. We describe experiments to study the impact of the radiating impurities on transport processes in the plasma boundary and the plasma core in the tokamak TEXTOR.The injection of impurities (neon, silicon, or argon) leads to the formation of a radiating plasma boundary where up to 90% of the input power can be distributed to large wall areas, thereby strongly reducing the convective heat flux density onto the plasma-facing components. At high plasma densities the impurity seeding leads to a transition to an improved confinement state termed the radiative improved mode. This operational scenario combines high density and high confinement with power exhaust by radiation under quasi-stationary discharge conditions.The confinement improvement can be explained by a reduction of transport caused by the ion temperature gradient mode. This reduction is initiated by the impurity content and amplified by a characteristic steepening of the density profiles of the background plasma. The extrapolation of the results obtained in TEXTOR, based on experiments in larger devices, is discussed.