ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Unterberg, U. Samm, M. Z. Tokar', A. M. Messiaen, J. Ongena, R. Jaspers
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 187-201
Technical Paper | TEXTOR: Radiation Cooling and Confinement | doi.org/10.13182/FST05-A699
Articles are hosted by Taylor and Francis Online.
The concept of a cold radiating plasma boundary has been proposed as a solution to the problem of power exhaust in magnetically confined fusion plasmas. We describe experiments to study the impact of the radiating impurities on transport processes in the plasma boundary and the plasma core in the tokamak TEXTOR.The injection of impurities (neon, silicon, or argon) leads to the formation of a radiating plasma boundary where up to 90% of the input power can be distributed to large wall areas, thereby strongly reducing the convective heat flux density onto the plasma-facing components. At high plasma densities the impurity seeding leads to a transition to an improved confinement state termed the radiative improved mode. This operational scenario combines high density and high confinement with power exhaust by radiation under quasi-stationary discharge conditions.The confinement improvement can be explained by a reduction of transport caused by the ion temperature gradient mode. This reduction is initiated by the impurity content and amplified by a characteristic steepening of the density profiles of the background plasma. The extrapolation of the results obtained in TEXTOR, based on experiments in larger devices, is discussed.