ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jung-Sik Yoon, Mi-Young Song, Young-Woo Kim
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 71-75
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6985
Articles are hosted by Taylor and Francis Online.
Eikonal approximation is applied to investigate the elastic electron-ion collisions in dense high -temperature plasmas. The longitudinal dielectric function is applied to describe the interaction potential in dense, high-temperature plasmas. The straight-line trajectory approximation is applied to the motion of the projectile electron in order to investigte the variation of the eikonal phase as a function of impact parameter and plasma parameters. The results show that the eikonal differential elastic cross section substantially decrease with the increase of the velocity ratio [overbar]v(𠼩>vT/v), i.e., increasing the electron thermal velocity. For a given velocity ratio, the eikonal cross section is increasing with the including the quantum mechanical effects. It is also found that the maximum position of the eikonal differential elastic cross section has receded from the target ion core as the velocity ratio [overbar]v decrease.