ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 46-51
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6981
Articles are hosted by Taylor and Francis Online.
A pure fusion mirror device suffers from the predicted low values of the Q factor (energy gain factor). A much higher energy production may be achieved in a fusion-fission reactor, where the fusion plasma neutron source is surrounded by a fission mantle. The fusion neutrons are capable of initiating energy producing fission reactions in the surrounding mantle. A mirror machine can probably be designed to provide sufficient space for a 1.1 m wide fission mantle inside the current coils, and the power production from the fission reactions can in such a case exceed the fusion power by more than two orders of magnitude (Pfis/Pfus [is approximately equal to] 150), suggesting a realistic reactor regime for a mirror based fusion-fission device. An energy producing device may operate with an electron temperature around 1 keV. Transmutation of long-lived radio active isotopes (minor actinides) from spent nuclear fuel from fission reactors can reduce geological storage from 100 000 years to only 300 years. Since the energy of D-T fusion neutrons are above the threshold for the most important transmutation reactions desired for treatment of nuclear waste, there may be an interest for a mirror transmutation device even if no net energy is produced. Recent theoretical simulations have considered the possibility to use the Gas Dynamic Trap (GDT) at Novosibirsk as a subcritical burner for transmutation by fusion neutrons. In the present work, possibilities for mirror based fusion-fission machines are discussed. Means to achieve sufficient end confinement for a straight field line mirror fusion-fission system with a thermal barrier are briefly analyzed. End leakage can alternatively be avoided by connecting the ends of a magnetic mirror with a stellerator tube, while the fusion neutrons are produced in the mirror part where a high energy sloshing ion component is confined. A zero dimensional model for such a mirror-stellarator system has been developed. The computed results indicate some possible parameter regimes for industrial transmutation and power production.