ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Yasaka et al.
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 1-8
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6974
Articles are hosted by Taylor and Francis Online.
A direct energy converter (DEC) designed for thermal ions escaping from a fusion reactor consists of a cusp magnetic field and one-or two-stage decelerating electrodes. In this CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce DC power. A normal cusp magnetic field enables us to separate electrons and ions for low energy electrons from a test plasma source, but not for electrons with much higher energies from the tandem mirror GAMMA10. The reason for this is found that the high energy electrons do not follow the field lines due to a high potential applied to the ion collector for ion deceleration. Use of a slanted cusp field has resolved the difficulty resulting in good separation. The efficiency of energy conversion of separated ions with wide spread in energy is ~55 % for a one-stage decelerating electrode. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. The system has revealed improvement in efficiency. From the measured voltage-current characteristics, the efficiency of this two-stage collector is estimated to have a value of 65-70 % at an optimum condition.