ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ph. Mertens, S. Brezinsek
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 161-171
Technical Paper | TEXTOR: Plasma-Wall Interactions | doi.org/10.13182/FST05-A697
Articles are hosted by Taylor and Francis Online.
The detailed physical mechanisms of hydrogen recycling are not yet completely clear. But, their understanding is required for the correct interpretation of spectroscopic measurements that are intended to provide us routinely with the total particle fluxes as well as with sound extrapolations to fusion devices of the next generation. Thanks to its large observation ports, TEXTOR provides ideal conditions for the combination of optical diagnostics based on completely different techniques, which can be applied simultaneously, with high resolving powers (/ = 2 × 104 to 2 × 105).It is shown how Zeeman spectroscopy on the Balmer-alpha transition (656.1 nm) and laser-induced fluorescence at Lyman-alpha (121.5 nm) both point to the presence of a substantial amount of cold hydrogen atoms (with kinetic energy <1 eV) in front of plasma-facing components, which is a phenomenon that, surprisingly, is largely independent of the local plasma parameters. This has led to a strong development of the spectroscopy of hydrogen molecules (Fulcher band), which may be a dominant source of atomic hydrogen in the plasma edge, and, as a final result, to an explanation for the phenomenological correction applied to the inverse photon efficiencies S/XB that are commonly used in the conversion of the photon fluxes into particle fluxes.