ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
T. P. Bernat, D. N. Bittner, S. Carter, B. Lawson, B. Motta, N. Petta, S. Phommarine
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 343-348
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A6961
Articles are hosted by Taylor and Francis Online.
Indirect-drive ignition targets require that the hohlraums contain a gas of helium, hydrogen, or a mixture of the two. For this purpose, thin polyimide windows must cover the laser entrance holes and any other hohlraum ports. We have fabricated, assembled, and tested such windows and have measured their deflection as a function of applied pressure. We also measured the permeation of helium through them. We find that the deflection is approximately linear with pressure and that the two polyimide formulations that we tested are internally consistent as well as consistent with the earlier data of Powell and Lopez when scaled for geometry. We also find that the permeation is linear with pressure, despite the large increase in window area-to-thickness ratio that occurs during a measurement run that results from the window deflection and thinning as the pressure increases. The permeability of our spin-cast material is 0.65 × 10-13 sccs/cmPa, with an uncertainty of 15% (sccs = standard cubic centimeters per second).