ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Z. Z. Johal, J. W. Crippen, A. C. Forsman, E. H. Lundgren, K. A. Moreno, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 331-336
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3503
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) tuning and ignition capsules will be gas filled through a laser precision drilled hole with a fill tube attached. To field these targets, several physics and assembly requirements must be met. These requirements drive the morphology of the final capsule and fill tube assembly (CFTA). Unexpectedly, they have also driven the need for a fill tube-transition tube subassembly, which is significant in the extra time required for fabrication. We have implemented engineering solutions that allow successful fabrication, testing, and transportation of CFTAs. During fabrication the fill tube is vertically inserted into both the transition tube and capsule, it is adhered with a low-viscosity adhesive, and there is a gap between mating surfaces. Nitrogen backpressure is flowed through the transition tube to prevent wicking of adhesive into the fill tube and to prevent partial restriction of flow or plugging. A nitrogen purge has also been implemented to displace atmospheric oxygen, which would otherwise absorb into the adhesive surface, truncate the polymerization process, and lead to a partially cured joint. Prior to transportation, the CFTA must complete a series of testing that simulates final assembly and NIF conditions: (a) helium leak test at room temperature, (b) helium leak test at liquid nitrogen temperature, (c) pressure test, and (d) X-ray fluorescence testing. The CFTA is transported in a custom device that provides vital support for the fill tube-to-capsule interface.