ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Matthew J. Bono, George Q. Langstaff, Octavio Cervantes, Craig M. Akaba, Steven R. Strodtbeck, Alex V. Hamza, Nick E. Teslich, Ronald J. Foreman, Johann P. Lotscher, Gregory W. Nyce, Ralph H. Page, Thomas R. Dittrich, Gail Glendinning
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 318-324
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3450
Articles are hosted by Taylor and Francis Online.
Targets were fabricated at Lawrence Livermore National Laboratory and were shot on the Omega laser to study the equation of state of nanoporous copper. The targets had a planar configuration and consisted of a 25-m-thick beryllium ablator, a 70-m-thick brominated-polystyrene preheat shield, and a 38-m-thick aluminum baseplate. A quartz window and a 30-m-thick nanoporous copper sample were bonded to the baseplate. The interface between the nanoporous copper and the aluminum baseplate was required to be as thin as possible so that it would not disturb the shock as it passed through the target. A process for bonding the nanoporous copper was developed that did not compact it or otherwise degrade its structure. An acceptable bond was achieved by sputtering a layer of indium-based solder onto the surface of the nanoporous copper and on the aluminum baseplate. The components were assembled and heated to melt the solder. The resulting solder interface had a thickness of ~1.5 m. The targets performed as expected in the experiments, and the interface between the nanoporous copper and the baseplate did not appear to significantly affect the shock as it passed through the target.