ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
B. J. Haid, T. N. Malsbury, C. R. Gibson, C. T. Warren
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 276-282
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3451
Articles are hosted by Taylor and Francis Online.
A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable shroud enclosure. The shroud is designed to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-walled construction with an inner wall that may be cooled to 75 to 100 K.The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of >1 × 10-6 g/cm2 was also demonstrated. The technique involves a separate measurement of the condensate-free crystal frequency as a function of temperature that is compared to the measurement for the cooldown trend of interest. The shroud significantly reduces the condensation rates of all gases and effectively eliminates H2O condensation.