ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. J. Haid, T. N. Malsbury, C. R. Gibson, C. T. Warren
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 276-282
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3451
Articles are hosted by Taylor and Francis Online.
A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable shroud enclosure. The shroud is designed to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-walled construction with an inner wall that may be cooled to 75 to 100 K.The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of >1 × 10-6 g/cm2 was also demonstrated. The technique involves a separate measurement of the condensate-free crystal frequency as a function of temperature that is compared to the measurement for the cooldown trend of interest. The shroud significantly reduces the condensation rates of all gases and effectively eliminates H2O condensation.