ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
J. A. Koch, B. J. Kozioziemski, J. Salmonson, A. Chernov, L. J. Atherton, E. Dewald, N. Izumi, M. A. Johnson, S. Kucheyev, J. Lugten, E. Mapoles, J. D. Moody, J. W. Pipes, J. D. Sater, D. Stefanescu
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 244-252
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3455
Articles are hosted by Taylor and Francis Online.
Deuterium-tritium (D-T) single-crystal ice layers in spherical shells often form with localized defects that we believe are vapor-etched grain boundary grooves built from dislocations and accommodating slight misorientations between contacting lattice regions. Ignition implosion target requirements limit the cross-sectional areas and total lengths of these grooves, and since they are often the dominant factor in determining layer surface quality, it is important that we be able to characterize their depths, widths, and lengths. We present a variety of ray-tracing and diffraction image modeling results that support our understanding of the profiles of the grooves, which is grounded in X-ray and optical imaging data. We also describe why these data are nevertheless insufficient to adequately determine whether or not a particular layer meets the groove requirements for ignition. We present accumulated data showing the distribution of groove depths, widths, and lengths from a number of layers, and we discuss how these data motivate the adoption of layer rejection criteria in order to ensure that layers that pass these criteria will almost certainly meet the groove requirements. We also describe future improvements that will provide more quantitative information about grooves in D-T ice layers.