ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. R. Gibson, D. P. Atkinson, J. A. Baltz, V. P. Brugman, F. E. Coffield, O. D. Edwards, B. J. Haid, S. F. Locke, T. N. Malsbury, S. J. Shiromizu, K. M. Skulina
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 233-236
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3453
Articles are hosted by Taylor and Francis Online.
The U.S. Department of Energy has embarked on a campaign to conduct credible fusion ignition experiments on the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in 2010. The target assembly specified for this campaign requires the formation of a deuterium-tritium fuel ice layer in a 2-mm-diam capsule at the center of a 9-mm-long × 5-mm-diam cylinder, called a hohlraum. The ice layer must be formed and maintained at temperatures below 20 K. At laser shot time, the target is positioned at the center of the NIF target chamber, aligned to the laser beams, and held stable to <7-m root-mean-square. We have completed the final design of the cryogenic target system and are currently integrating the devices necessary to create, characterize, and position the cryogenic target for ignition experiments.