ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
O. Neubauer, G. Czymek, B. Giesen, P. W. Hüttemann, M. Sauer, W. Schalt, J. Schruff
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 76-86
Technical Paper | TEXTOR: A Flexible Device | doi.org/10.13182/FST05-A689
Articles are hosted by Taylor and Francis Online.
TEXTOR is the Tokamak Experiment for Technology Oriented Research in the field of plasma-wall interaction. The scope includes a detailed analysis of particle and energy exchange between the plasma and the surrounding chamber as well as active measures to optimize the first wall and the plasma boundary region. TEXTOR is a medium-sized tokamak belonging to the class of moderate-field but large-volume devices having a circular cross section of the plasma and an iron core. The plasma major radius is 1.75 m, and the minor radius is 0.47 m. The maximum plasma current is 0.8 MA, the maximum field is 3 T, and the maximum pulse length is 10 s. TEXTOR is fed directly from the 110-kV grid using an installed converter power of ~300 MVA. The inner wall of TEXTOR is equipped with several specially shaped limiters being partly remotely movable. Special design features of TEXTOR are excellent access for diagnostics to domains near the wall, large portholes suitable for implementing methods to control the plasma boundary, facilities to heat the vacuum vessel and the liner, and provisions for exchange of the liner. TEXTOR has been upgraded with auxiliary heating systems (neutral beam injection, radio-frequency heating, and microwave heating of 9 MW in total), a toroidal pumped limiter, an upgraded magnetization coil, and recently the dynamic ergodic divertor (DED). The DED is a novel flexible tool to influence transport parameters at the plasma edge and to study the resulting effects on heat exhaust, edge cooling, impurity screening, plasma confinement, and stability. The number of special features and the flexibility of TEXTOR provide excellent opportunities for important contributions to fusion research.