ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
I. V. Shikhovtsev et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 321-323
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A677
Articles are hosted by Taylor and Francis Online.
A diagnostic neutral beam injector based on radiofrequency ion source has been developed at BINP, Novosibirsk for plasma diagnostics in magnetic fusion devices including magnetic mirrors with pulse duration up to several seconds, plasma density up to 1020 m-3 and plasma radius ~0.5m.It was observed that properties of the ceramic plasma box considerably changed after several hours of integrated operational time. After that, the proton specie in the beam essentially decreases. Eventually the proton component of the beam decreases approximately by 10% (from 60% down to 50% by current). This problem can be resolved by protection of the ceramic wall by a Faraday shield. We investigated the shield, which was made of aluminium tube with longitudinal slits and with a diameter close to that of the inner ceramic wall of the plasma box.This paper discusses the results of the beam composition measurements after installation of the Faraday shield.