ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. S. Hong et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 240-242
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A650
Articles are hosted by Taylor and Francis Online.
Continuing the experiments reported previously, additional microwave power has been applied to the plug region of Hanbit in order to increase the stored energy and beta of the hot-electron plasma created there. Two new 1.5-kW VA-806 klystrons at 7.67 GHz and 7.87 GHz have been used in conjunction with the existing 2-kW CPI klystron at 14 GHz. The plasma is created in order to provide a high-beta ring to stabilize the Hanbit central cell plasma against ballooning instabilities. An array of Hall probes mounted on the outside of the Hanbit plug cavity was installed to measure the axial profile of the Bz fields. The total stored energy was measured by diamagnetic loops and the radial location of the plasma was determined by a Si-PIN diode detector measuring the energetic electron end loss. All three measurements were to be used to determine the radial and axial location of the plasma, the plasma volume, the stored energy, and hence the plasma beta. However, the Bz signal was too small to measure and the diamagnetic signal was smaller than previously found. The ring was found to be very wide and not adequate to stabilize the central cell plasma.