ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. S. Hong et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 240-242
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A650
Articles are hosted by Taylor and Francis Online.
Continuing the experiments reported previously, additional microwave power has been applied to the plug region of Hanbit in order to increase the stored energy and beta of the hot-electron plasma created there. Two new 1.5-kW VA-806 klystrons at 7.67 GHz and 7.87 GHz have been used in conjunction with the existing 2-kW CPI klystron at 14 GHz. The plasma is created in order to provide a high-beta ring to stabilize the Hanbit central cell plasma against ballooning instabilities. An array of Hall probes mounted on the outside of the Hanbit plug cavity was installed to measure the axial profile of the Bz fields. The total stored energy was measured by diamagnetic loops and the radial location of the plasma was determined by a Si-PIN diode detector measuring the energetic electron end loss. All three measurements were to be used to determine the radial and axial location of the plasma, the plasma volume, the stored energy, and hence the plasma beta. However, the Bz signal was too small to measure and the diamagnetic signal was smaller than previously found. The ring was found to be very wide and not adequate to stabilize the central cell plasma.