ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
George Tsotridis
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 198-208
Technical Paper | doi.org/10.13182/FST98-A64
Articles are hosted by Taylor and Francis Online.
Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, causing melting and evaporation of the metallic surface layer. Simultaneously, large eddy currents are induced in the plasma-facing components, which interact with the large background magnetic field, hence producing substantial electromagnetic loads that have a strong influence on component integrity and lifetime. The depths and shapes of the molten layers of pure tungsten metal, which are produced when a high heat load strikes the surface of the material during a plasma disruption under the simultaneous influence of external body forces arising from electromagnetic fields, were studied by using a two-dimensional transient computer program that solves the equations of continuity, momentum, and energy, with monotonically varying external body forces. It is demonstrated that external body forces, having an outward direction from the plane of the test piece and with different gradients with respect to the radial direction, influence the shapes and depths of molten layers to a significant extent. Results are presented for a range of energy densities, disruption times, and gradients of linearly varying external body forces.