ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
George Tsotridis
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 198-208
Technical Paper | doi.org/10.13182/FST98-A64
Articles are hosted by Taylor and Francis Online.
Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, causing melting and evaporation of the metallic surface layer. Simultaneously, large eddy currents are induced in the plasma-facing components, which interact with the large background magnetic field, hence producing substantial electromagnetic loads that have a strong influence on component integrity and lifetime. The depths and shapes of the molten layers of pure tungsten metal, which are produced when a high heat load strikes the surface of the material during a plasma disruption under the simultaneous influence of external body forces arising from electromagnetic fields, were studied by using a two-dimensional transient computer program that solves the equations of continuity, momentum, and energy, with monotonically varying external body forces. It is demonstrated that external body forces, having an outward direction from the plane of the test piece and with different gradients with respect to the radial direction, influence the shapes and depths of molten layers to a significant extent. Results are presented for a range of energy densities, disruption times, and gradients of linearly varying external body forces.