ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. V. Anikeev et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 92-95
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A614
Articles are hosted by Taylor and Francis Online.
In the gas dynamic trap experiment with 17 keV and 4.5 MW deuterium neutral beam injection the spatial profile of fast ion density has been studied by different methods: MSE spectroscopy, active charge-exchange diagnostic and measurement of DD fusion product fluxes. The characteristic radius of fast ion density profile was found to be about 7 cm at 1/e level mapped onto the GDT midplane, that is close to gyroradius of 10 keV deuteron and less than the estimated region occupied by the captured ions(~15 cm). The analysis of energy balance shows that discrepancy between measured and simulated values (~1.5 times) cannot be explained by enhanced fast ions loses. Simplified theory of fast ion density spatial profiles formation shows that energetically profitable configuration has narrow radial profile. Physical mechanisms of density profile formation are also described.