ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A. V. Anikeev et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 92-95
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A614
Articles are hosted by Taylor and Francis Online.
In the gas dynamic trap experiment with 17 keV and 4.5 MW deuterium neutral beam injection the spatial profile of fast ion density has been studied by different methods: MSE spectroscopy, active charge-exchange diagnostic and measurement of DD fusion product fluxes. The characteristic radius of fast ion density profile was found to be about 7 cm at 1/e level mapped onto the GDT midplane, that is close to gyroradius of 10 keV deuteron and less than the estimated region occupied by the captured ions(~15 cm). The analysis of energy balance shows that discrepancy between measured and simulated values (~1.5 times) cannot be explained by enhanced fast ions loses. Simplified theory of fast ion density spatial profiles formation shows that energetically profitable configuration has narrow radial profile. Physical mechanisms of density profile formation are also described.