ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yuichi Ogawa et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 63-70
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A609
Articles are hosted by Taylor and Francis Online.
Self-organization related with relaxation phenomenon is playing an important role in various aspects of magnetic confined plasmas. Recently a relaxation theory including the plasma flow has been developed by Mahajan-Yoshida, and a new relaxation state has been identified. The two-fluid relaxation condition is given by + (V/VA)2 = const. To study a self-organized structure with strong plasma flow, we have introduced an internal coil device. By inducing a radial electric field with appropriate methods, we could drive a toroidal plasma flow, and confine a high beta plasma in a core region. The internal coil device Mini-RT with a high temperature superconductor(HTS) coil(Rc=0.15m, Ic=50kA) has been constructed. The vacuum chamber is 1 m in diameter and ~0.7 m in height. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. We have started ECH plasma experiments with the coil supported mechanically. The electron density, which has a peak near the internal coil, is of order 1016 m-3, reaching the cut-off density of the microwave. While, the electron temperature is of order 10 eV with a broad profile. Estimated energy confinement time is of order 10-(5-6) sec. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured with laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded to levitating the HTS coil during one hour with an accuracy of less than 20 m. A preliminary experiment for the plasma production at the floating condition of the HTS coil has been initiated. It is affirmed that the levitation system works well and plasma with separatrix configuration is produced.