ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Kwon et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 17-22
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A602
Articles are hosted by Taylor and Francis Online.
The HANBIT device is a simple mirror-type device of which the length, radius, and magnetic field are about 5 m, 0.18 m, and 0.1-0.3 T, respectively, in the central cell. In HANBIT, two antenna systems are used for the plasma production, heating, and MHD stabilization; one is the slot antenna located near the center region with the maximum power of 500 kW and the typical frequency of 3.5 MHz, and the other DHT antenna located near the mirror throat with the maximum power of 100 kW and the frequency of 3.75 MHz. Recent experimental studies in HANBIT indicate that the slot antenna system can produce stable, high-density plasmas in apparently two different regimes; one is the fast wave regime with the ratio w/Wci~2 and the other is the slow wave regime with w<Wci, where w and Wci are the RF and ion cyclotron resonance frequencies, respectively. The possible stabilization mechanism appears to be the ponderomotive force by the fast wave in the regime of w/Wci~2, while the RF side-band coupling force by the slow wave in the regime of w<Wci. A clear excitation of the flute-type, interchange modes with the axial mode number n=0 is observed when the RF power is not enough for the stabilization, particularly, in the slow wave regime. Here, we report the results of these experimental and theoretical studies on the RF heating and stabilization processes by the slot antenna in HANBIT. In addition, we introduce briefly the results of the other on-going research works in HANBIT, which include the beach-wave ion heating experiment using DHT antenna, the pre-ionization experiment using the thermal electron cathode or ECH, and the analysis of plasma-wall interaction and neutral transport.