ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lali G. Chatterjee
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 147-150
Technical Paper | doi.org/10.13182/FST98-A60
Articles are hosted by Taylor and Francis Online.
Physics similar to the r-process mechanism of forming heavy elements in core-collapse supernovas is invoked to explain the recent observation of nuclear transmutations in thin-film nickel coatings during electrolysis.It is suggested that electrolysis could catalyze weak interactions of the electron capture type in thin films, resulting in an enhanced rate for the weak capture of electrons by protons to form real or virtual neutrons. These could subsequently be absorbed by the nuclei in the metal, and the neutrinos created to satisfy conservation laws would escape detection. The neutron-rich nuclei could stabilize by various beta decay channels similar to the r-process, and this model could explain the observed transmuted elements as well as the absence of radiation.