ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Pacific Fusion predicts “1,000-fold leap” in performance, net facility gain by 2030
Inertial fusion energy (IFE) developer Pacific Fusion, based in Fremont, Calif., announced this morning that it is on target to achieve net facility gain—more fusion energy out than all energy stored in the system—with a demonstration system by 2030, and backs the claim with a technical paper published yesterday on arXiv: “Affordable, manageable, practical, and scalable (AMPS) high-yield and high-gain inertial fusion.”
Lali G. Chatterjee
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 147-150
Technical Paper | doi.org/10.13182/FST98-A60
Articles are hosted by Taylor and Francis Online.
Physics similar to the r-process mechanism of forming heavy elements in core-collapse supernovas is invoked to explain the recent observation of nuclear transmutations in thin-film nickel coatings during electrolysis.It is suggested that electrolysis could catalyze weak interactions of the electron capture type in thin films, resulting in an enhanced rate for the weak capture of electrons by protons to form real or virtual neutrons. These could subsequently be absorbed by the nuclei in the metal, and the neutrinos created to satisfy conservation laws would escape detection. The neutron-rich nuclei could stabilize by various beta decay channels similar to the r-process, and this model could explain the observed transmuted elements as well as the absence of radiation.