ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Mofreh R. Zaghloul, A. René Raffray
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 27-45
Technical Paper | doi.org/10.13182/FST05-A596
Articles are hosted by Taylor and Francis Online.
This paper considers the physical processes and material removal mechanisms associated with the energy deposition in an inertial fusion energy liquid wall from the prompt X-ray spectrum of an indirect-drive inertial fusion target. These are important as the ablated material could generate aerosol in the chamber, which without adequate chamber clearing could result in a chamber environment unsuitable for driver propagation and/or target injection. Simple computations were used to identify and characterize the important material removal mechanisms relevant to the energy deposition regime under consideration. Explosive boiling was found to be the most relevant thermal response mechanism due to the high heating rate from the X-ray photon energy deposition. Investigation showed that explosive boiling occurs when the material temperature approaches the critical temperature and has a threshold value that can be derived from the material equation of state or the rate of homogeneous nucleation. Another important mechanism is mechanical spall that can result when shock wave-induced local tensile stresses exceed the spall strength of the material. Both explosive boiling and mechanical spall occur upon crossing the thermodynamic stability border (spinodal curve) either through rapid heating or through overexpansion of the material.Relevant material properties of the candidate liquid wall materials needed to perform the present assessment are compiled, derived, and presented. A simple energy deposition volumetric analysis is used to estimate both thermally ablated and mechanically spalled regions of the liquid wall material. The choice of liquid/wall combination is found to play an important role in reducing or eliminating the occurrence of spall in the liquid wall.