ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. G. Durbin, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, T. P. Koehler, ARIES Team
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 16-26
Technical Paper | doi.org/10.13182/FST05-A595
Articles are hosted by Taylor and Francis Online.
The "hydrodynamic source term" has been identified as a possible issue for thick liquid protection schemes in inertial fusion energy reactor cavities. The hydrodynamic source term refers to the ejected droplets due to the primary turbulent breakup of the jets themselves. Droplets are continuously ejected from the surface of the jets and spread about the chamber, possibly interfering with driver propagation and target injection. Published correlations are examined in order to estimate upper limits for the hydrodynamic source term in the case of the robust point design (RPD-2002), an update to the High-Yield Lithium Injection Fusion Energy II (HYLIFE-II) design. Experimental data for vertical turbulent sheets of water issuing into ambient air downward from nozzles of thickness (small dimension) = 1 cm and aspect ratio of 10 are compared with the empirical correlations at near-prototypical Reynolds numbers of 1.3 × 105. A simple mass collection technique was developed to estimate the amount of ejected droplets from the jet surface. Boundary layer cutting is examined as a means of reducing the source term and improving surface smoothness. Alternate flow conditioning schemes are also explored to establish the relative importance of "traditional" flow straightening elements. Planar laser-induced fluorescence was used to visualize the free-surface geometry of the liquid sheet in the near-field region up to 25 downstream of the nozzle exit. These results indicate that boundary layer cutting can suppress the hydrodynamic source term for a well-conditioned jet but is not a substitute for proper flow conditioning.