ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. G. Durbin, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, T. P. Koehler, ARIES Team
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 16-26
Technical Paper | doi.org/10.13182/FST05-A595
Articles are hosted by Taylor and Francis Online.
The "hydrodynamic source term" has been identified as a possible issue for thick liquid protection schemes in inertial fusion energy reactor cavities. The hydrodynamic source term refers to the ejected droplets due to the primary turbulent breakup of the jets themselves. Droplets are continuously ejected from the surface of the jets and spread about the chamber, possibly interfering with driver propagation and target injection. Published correlations are examined in order to estimate upper limits for the hydrodynamic source term in the case of the robust point design (RPD-2002), an update to the High-Yield Lithium Injection Fusion Energy II (HYLIFE-II) design. Experimental data for vertical turbulent sheets of water issuing into ambient air downward from nozzles of thickness (small dimension) = 1 cm and aspect ratio of 10 are compared with the empirical correlations at near-prototypical Reynolds numbers of 1.3 × 105. A simple mass collection technique was developed to estimate the amount of ejected droplets from the jet surface. Boundary layer cutting is examined as a means of reducing the source term and improving surface smoothness. Alternate flow conditioning schemes are also explored to establish the relative importance of "traditional" flow straightening elements. Planar laser-induced fluorescence was used to visualize the free-surface geometry of the liquid sheet in the near-field region up to 25 downstream of the nozzle exit. These results indicate that boundary layer cutting can suppress the hydrodynamic source term for a well-conditioned jet but is not a substitute for proper flow conditioning.