ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Zengyu Xu, Chanjie Pan, Weishan Kang
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 577-585
Technical Note | doi.org/10.13182/FST04-A593
Articles are hosted by Taylor and Francis Online.
The advanced limiter-divertor plasma-facing system (ALPS) has been studied for several years, but the magnetohydrodynamic (MHD) stability of free surface jet flow in a gradient transverse magnetic field is one of the key remaining issues. Recently, some experiments on jet flow were performed with a 0.2- to 1.95-T gradient magnetic field and 2.9, 3.24, and 4.10 m/s velocities for a flow diameter of 6 mm. The results indicated that the transverse gradient magnetic field strongly shortens the jet flow range and the shape of the cross section of the jet flow deforms from round to elliptical and finally becomes a bowed-down shape in the jet flow downstream under these experimental conditions. This paper includes simple modeling of jet flow MHD stability in a gradient transverse magnetic field, which derives the velocity and the area of the cross section of the jet flow along the flow path. The theoretical expected values are in good agreement with experimental results.