ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Baiquan Deng, Zaixin Li, Jinhua Huang, Tao Yuan
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 548-560
Technical Paper | doi.org/10.13182/FST04-A590
Articles are hosted by Taylor and Francis Online.
A summary of the tritium system design activities for the engineering outline design of a fusion experimental reactor [Fusion Experimental Breeder-E (FEB-E)] is presented. This paper is divided into three sections. First, the geometry, loading features, and tritium concentrations in liquid lithium of tritium breeding zones in blankets are described. Then, a tritium flowchart corresponding to the tritium fuel cycle system is constructed, and the SWITRIM code is developed for calculation of the inventories in the ten subsystems. Results show that the necessary initial tritium storage to start up the reactor with fusion power of 143 MW is ~317 g. Finally, a tritium leakage analysis under different operation circumstances is performed. It is found that the potential danger of tritium leakage could result from the exhausted gas of the divertor system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput.